## 2,3,5,6-Tetra-aryl-1,2,4,5-tetra-azapentalenes.<sup>1</sup> A New Heteroaromatic System

By J. H. LEE, A. MATSUMOTO, O. SIMAMURA,\* and M. YOSHIDA

(Department of Chemistry, Faculty of Science, Tokyo University, Hongo, Toyko, Japan)

Summary Arylazoethynylarenes, on heating in solution, dimerize to give 2,3,5,6-tetra-aryl-1,2,4,5-tetra-azapentalenes (II), a very stable new heteroaromatic system.

p-CHLOROPHENYLAZOETHYNYLBENZENE, (I; Ar<sup>1</sup> = Ph, Ar<sup>2</sup> = p-Cl·C<sub>6</sub>H<sub>4</sub>), prepared from p-chlorobenzenediazonium chloride and silver phenylacetylide,<sup>2</sup> on prolonged heating in boiling cyclohexane deposited pale yellow crystals (60%), C<sub>28</sub>H<sub>18</sub>Cl<sub>2</sub>N<sub>4</sub>, m.p. 328°,  $\lambda_{max}$  (benzene) 297 and 408 nm (log  $\epsilon$  4·17 and 4·05), and mass-spectral M, 480.

It is sparingly soluble in ordinary organic solvents giving strongly fluorescent solutions, but dissolves readily in concentrated sulphuric acid and is re-precipitated by diluting with water. It is unaffected by heating under reflux in 65% sulphuric acid and can be sublimed *in vacuo* at about 300°. With silver nitrate in a mixture of aceto-nitrile and tetrahydrofuran it gives a 1:1 adduct,  $C_{28}H_{18}$ -Cl<sub>2</sub>N<sub>4</sub>, AgNO<sub>3</sub>, m.p. 314° (decomp.).

The structure of this compound has been shown to be 3,6-diphenyl-2,5-bis-(p-chlorophenyl)-1,2,4,5-tetra-azapentalene, (II; Ar<sup>1</sup> = Ph, Ar<sup>2</sup> = p-Cl·C<sub>6</sub>H<sub>4</sub>), from its mode of formation and the following degradations.

Its pyrolysis *in vacuo* at about 500° afforded pale yellow needles (30%), m.p. 93°, identified with  $\alpha$ -(*p*-chlorophenylimino)phenylacetonitrile by mixed m.p. with an authentic specimen<sup>3</sup> and by comparison of the i.r. spectra. Catalytic hydrogenation of (II) with platinum oxide in acetic acid at 60° gave two pyrazole derivatives, C<sub>24</sub>H<sub>26</sub>ClN<sub>3</sub>O (III, 25%), m.p. 233—235° (dec.), and C<sub>24</sub>H<sub>32</sub>ClN<sub>3</sub>O (IV, 10%), m.p. 214—215°.

Compound (III) was assigned the structure 4-acetamino-1-p-chlorophenyl-3-cyclohexylmethyl-5-phenylpyrazole on



the basis of spectral and analytical data and of degradation, and (IV), consequently, is 4-acetamino-1-p-chlorophenyl-5-cyclohexyl-3-cyclohexylmethylpyrazole. Hydrolysis of (III) and deamination of the resulting amine by reduction of the corresponding diazonium tetrafluoroborate with sodium borohydride yielded needles,  $C_{22}H_{23}ClN_2$ , m.p. 113-114°, identified as 1-p-chlorophenyl-3-cyclohexylmethyl-5-phenylpyrazole (V) on the basis of a separate synthesis of this compound by condensation of p-chlorophenylhydrazine with 1,4-diphenylbutane-1,3-dione to give 3-benzyl-1-p-chlorophenyl-5-phenylpyrazole (VI), m.p. 111-112°, followed by catalytic hydrogenation. Evidence for the presence of a cyclohexylmethyl instead of a benzyl group in (V) is furnished by its n.m.r. spectrum (60 MHz.) in deuteriochloroform with a doublet signal at  $\delta$  2.59 (2H, J 6 Hz.), whereas the n.m.r. spectrum of (VI) shows a singlet at  $\delta 4.06$  due to a benzylic methylene.

The tetra-azapentalenes listed in the Table have been prepared by similar dimerization. Satisfactory elemental analyses and supporting spectral data have been obtained for all compounds reported.

The parent structure, 2H,5H-pyrazolo[4,3-c]pyrazole, is meso-ionic, being satisfactorily represented only by several charge-separated structures such as (VII) and (VIII).

| TABLE:                             | Tetra-azapentalenes                              | (II)                       |
|------------------------------------|--------------------------------------------------|----------------------------|
| Ar <sup>1</sup>                    | Ar <sup>2</sup>                                  | M.p.                       |
| $\mathbf{Ph}$                      | p-Br·C <sub>6</sub> H₄                           | $34	ilde{2}$ — $343^\circ$ |
| $\mathbf{Ph}$                      | <i>p</i> -NO₂·C <sub>6</sub> H₄                  | $358 - 359^{\circ}$        |
| p-NO₂·C <sub>6</sub> H₄            | p-Cl·C <sub>6</sub> H <sub>4</sub>               | $> 340^{\circ}$            |
| p-Br·C <sub>6</sub> H <sub>4</sub> | p-Cl·C <sub>6</sub> H <sub>4</sub>               | $349^{\circ}$              |
| p-Br·C <sub>6</sub> H <sub>4</sub> | p-NO2·C6H4                                       | $> 370^{\circ}$            |
| $p - \text{Me} \cdot C_6 H_4$      | p-Cl·C <sub>6</sub> H <sub>4</sub>               | 321°                       |
| p-Me·C <sub>6</sub> H <sub>4</sub> | p-NO <sub>2</sub> ·C <sub>6</sub> H <sub>4</sub> | $354 - 355^{\circ}$        |

Evidently, the nucleus contains a total of ten  $\pi$ -electrons distributed over the two rings; accordingly an aromatic character similar to azulene or naphthalene is expected.

(Received, September 26th, 1969; Com. 1456.)

<sup>1</sup> The parent structure may be named 2H,5H-pyrazolo[4,3-c]pyrazole. Substituted 1H,4H-pyrazolo[4,3-c]pyrazoles have been prepared by D. G. Farnum and P. Yates, J. Amer. Chem. Soc., 1962, 84, 1399. <sup>2</sup> A. M. Sladkov, L. Yu. Ukhin, and G. N. Gorshkova, Zhur. org. Khim., 1966, 2, 1456 [Chem. Abs., 1967, 66, 551438].

<sup>3</sup> O. Mumm, Ber., 1910, 43, 886.